Three pion Deck Amplitude in photoproduction
 straight clone of the Ascoli study
 JJD May 18, 2006

The basic change required is that the 'upper vertex' scattering process is now $\gamma \pi_{t} \rightarrow \pi_{2} \pi_{3}$, which will now have the complication of the photon helicity index. I'll consider two ways to set this up

1 General $2 \rightarrow 2$ helicity amplitude

Perl equation (10-9a,b) tells us that in the CM frame of the $2 \rightarrow 2$ scattering process we can write the helicity amplitude

$$
\begin{equation*}
T_{\lambda_{\gamma}}(s, \theta, \phi)=\frac{8 \pi \sqrt{s}}{\sqrt{p_{i}^{*} p_{f}^{*}}} e^{i \lambda_{\gamma} \phi} \sum_{J}(2 J+1) d_{\lambda_{\gamma}, 0}^{J}(\theta)\langle 00| T^{J}(s)|\lambda 0\rangle \tag{1}
\end{equation*}
$$

where the angles θ, ϕ are those of one of the pions relative to the z-axis defined by the incoming photon. In the case that the photon is actually a pion and has no helicity index this reduces to the first line of Ascoli equation (2.7). Parity invariance is manifested in Perl equation (10-19a) and gives the constraint $\langle 00| T^{J}(s)|-\lambda 0\rangle=-\langle 00| T^{J}(s)|\lambda 0\rangle$

If one performs an Euler rotation, $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)$, followed by another, $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$, the resulting net rotation is (α, β, γ). In the basis of angular momentum eigenstates we have the representation

$$
\begin{equation*}
D_{m^{\prime}, m}^{J}(\alpha, \beta, \gamma)=\sum_{m^{\prime \prime}} D_{m^{\prime}, m^{\prime \prime}}^{J}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) D_{m^{\prime \prime}, m}^{J}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) \tag{2}
\end{equation*}
$$

The $m=m^{\prime}=0$ case of this expression is used in Ascoli equation (2.8) to relate the scattering amplitude in the $[23]_{R F}$ to some standard angle set. I think it works something like this:

- π_{3} is at angle $\left(\chi_{1}, \gamma\right)$ to the 23 direction (not sure this is how γ enters?)
- hence in the $[23]_{R F} \pi_{2}$ is at angle $\left(\pi-\chi_{1}, \gamma+\pi\right)$
- from Ascoli figure 5 there is an angle ψ between A and 23

So then we can compose the angles (not sure about the ordering though) as

$$
\begin{align*}
P_{S}\left(\theta_{\pi \pi}\right)=D_{0,0}^{S *}\left(0, \theta_{\pi \pi}, 0\right) & =\sum_{\lambda} D_{0, \lambda}^{S *}(0, \psi, 0) D_{\lambda, 0}^{S *}\left(\gamma+\pi, \pi-\chi_{1}, 0\right) \tag{3}\\
& =\sum_{\lambda} d_{0 \lambda}^{S}(\psi)(-1)^{\lambda} e^{i \lambda \gamma}(-1)^{S-\lambda} d_{\lambda 0}^{S}\left(\chi_{1}\right) \tag{4}\\
& =(-1)^{S} \sum_{\lambda} d_{0 \lambda}^{S}(\psi) D_{\lambda, 0}^{S *}\left(\gamma, \chi_{1}, 0\right) \tag{5}
\end{align*}
$$

In the photon case the only difference appears to be the extra helicity index

$$
\begin{equation*}
d_{\lambda_{\gamma} 0}\left(\theta_{\gamma \pi}\right)=(-1)^{S} \sum_{\lambda} d_{\lambda_{\gamma} \lambda}^{S}(\psi) D_{\lambda, 0}^{S *}\left(\gamma, \chi_{1}, 0\right) \tag{6}
\end{equation*}
$$

I'll assume we can put the $2 \rightarrow 2$ reaction in the $z x$ plane ($\phi=0$) and deal with the photon polarisation direction (which we could define using the angle ϕ in the first equation) later (via the density matrix). Then we have

$$
\begin{equation*}
T_{\lambda_{\gamma}}(s, \theta, \phi)=\frac{8 \pi \sqrt{s}}{\sqrt{p_{i}^{*} p_{f}^{*}}} \sum_{J}(2 J+1)\langle 00| T^{J}(s)|\lambda 0\rangle(-1)^{S} \sum_{\lambda} d_{\lambda_{\gamma} \lambda}^{S}(\psi) D_{\lambda, 0}^{S *}\left(\gamma, \chi_{1}, 0\right) \tag{7}
\end{equation*}
$$

which is in a form that allows us to follow through the rest of the Ascoli manipulations easily.

2 Covariant method for $S=1$

This provides a cross check to the above, but note that it is still reliant on me having correctly understood all the angles. Discrete and Lorentz symmetries limit the structures of $\pi \pi$ and $\gamma \pi$ couplings to the ρ,

$$
\begin{align*}
\left\langle\pi_{2}\left(p_{2}\right) \pi_{3}\left(p_{3}\right) \mid \rho\left(\lambda, p_{2}+p_{3}\right)\right\rangle & =g \epsilon_{\mu}\left(p_{2}-p_{3}\right)^{\mu} \tag{8}\\
\left\langle\rho\left(\lambda, p_{A}+p_{t}\right) \mid \gamma\left(\lambda_{\gamma}, p_{A}\right) \pi_{t}\left(p_{t}\right)\right\rangle & =f \epsilon^{\alpha \beta \gamma \delta} \epsilon_{\alpha}\left(\lambda_{\gamma}, p_{A}\right)\left(p_{A}+p_{t}\right)_{\beta}\left(p_{A}-p_{t}\right)_{\gamma} \epsilon_{\delta}^{*}\left(\lambda, p_{A}+p_{t}\right) \tag{9}
\end{align*}
$$

Hence the helicity amplitude

$$
\begin{align*}
T_{\lambda_{\gamma}} & =\left\langle\pi_{2}\left(p_{2}\right) \pi_{3}\left(p_{3}\right) \mid \gamma\left(\lambda_{\gamma}, p_{A}\right) \pi_{t}\left(p_{t}\right)\right\rangle \tag{10}\\
& \propto \sum_{\lambda}\left\langle\pi_{2}\left(p_{2}\right) \pi_{3}\left(p_{3}\right) \mid \rho\left(\lambda, p_{2}+p_{3}\right)\right\rangle\left\langle\rho\left(\lambda, p_{A}+p_{t}\right) \mid \gamma\left(\lambda_{\gamma}, p_{A}\right) \pi_{t}\left(p_{t}\right)\right\rangle+\ldots \tag{11}\\
& =f g\left(p_{2}-p_{3}\right)^{\mu}\left(-g_{\mu \alpha}+\frac{P_{\mu} P_{\alpha}}{P^{2}}\right) \epsilon^{\alpha \beta \gamma \delta} P_{\beta}\left(p_{A}-p_{t}\right)_{\gamma} \epsilon_{\delta}^{*}\left(\lambda, p_{A}+p_{t}\right) \tag{12}
\end{align*}
$$

where $P=p_{2}+p_{3}=p_{A}+p_{t}$. In the CM frame $P^{\mu}=(\sqrt{s}, \overrightarrow{0}), \vec{p}_{2}=-\vec{p}_{3} \ldots$ so that

$$
\begin{equation*}
T_{\lambda_{\gamma}} \propto-f g \sqrt{s}(-4)(-1) \vec{p}_{3} \cdot \vec{p}_{\gamma} \times \vec{\epsilon}\left(\lambda_{\gamma}\right) \tag{13}
\end{equation*}
$$

Let's evaluate this in a couple of simple frames. Firstly the frame in which the photon is along the z axis and p_{2} is at some angle θ, ϕ. Then the basis of photon polarisation vectors is $\vec{\epsilon}\left(\lambda_{\gamma}= \pm\right)=\mp \frac{1}{\sqrt{2}}(1, \pm i, 0)$. Hence

$$
\begin{equation*}
T_{ \pm}(s, \theta) \propto-4 f g \sqrt{s} i \frac{\sin \theta}{\sqrt{2}} e^{ \pm i \phi} \tag{14}
\end{equation*}
$$

Since $d_{ \pm 0}^{1}(\theta)=\mp \frac{\sin \theta}{\sqrt{2}}$ we see that this agrees with our general form above including satifying the parity constraint.

The other obvious frame is the one used by Ascoli where I think the appropriate angles are

$$
\begin{align*}
\hat{p}_{3} & =\left(\sin \chi_{1} \cos \gamma, \sin \chi_{1} \sin \gamma, \cos \chi_{1}\right) \tag{15}\\
\hat{p}_{A} & =(-\sin \psi, 0, \cos \psi) \tag{16}
\end{align*}
$$

(I'm assuming Ascoli figure 5 is telling me the x-compt of \hat{p}_{A} is negative).
We can rotate the photon polarisation basis for z-directed photons into the direction \hat{p}_{A} :

$$
\begin{equation*}
\vec{\epsilon}\left(\hat{p}_{A}, \pm\right)=\mp \frac{1}{\sqrt{2}}(\cos \psi, \pm i, \sin \psi) \tag{17}
\end{equation*}
$$

Hence we can evaluate

$$
\begin{equation*}
T_{ \pm}(s, \ldots) \propto-4 f g \sqrt{s} \frac{i}{\sqrt{2}}\left(\cos \psi \sin \chi_{1} \cos \gamma \pm i \sin \chi_{1} \sin \gamma+\sin \psi \cos \chi_{1}\right) \tag{18}
\end{equation*}
$$

which can be compared to the case $S=1$ in

$$
\begin{equation*}
T_{\lambda_{\gamma}}=\frac{8 \pi \sqrt{s}}{\sqrt{p_{i}^{*} p_{f}^{*}}} \sum_{J}(2 J+1)\langle 00| T^{J}(s)|\lambda 0\rangle(-1)^{S} \sum_{\lambda} d_{\lambda_{\gamma} \lambda}^{S}(\psi) D_{\lambda, 0}^{S *}\left(\gamma, \chi_{1}, 0\right) \tag{19}
\end{equation*}
$$

with the result that they agree.

